
What is C++?

C++ is a cross-platform language that can be used to create high-performance
applications.

C++ was developed by Bjarne Stroustrup, as an extension to the C language.

C++ gives programmers a high level of control over system resources and

memory.

The language was updated 3 major times in 2011, 2014, and 2017 to C++11,
C++14, and C++17.

Why Use C++

C++ is one of the world's most popular programming languages.

C++ can be found in today's operating systems, Graphical User Interfaces, and
embedded systems.

C++ is an object-oriented programming language which gives a clear structure
to programs and allows code to be reused, lowering development costs.

C++ is portable and can be used to develop applications that can be adapted to
multiple platforms.

C++ is fun and easy to learn!

As C++ is close to C# and Java, it makes it easy for programmers to switch to

C++ or vice versa

When we consider a C++ program, it can be defined as a collection of objects that
communicate via invoking each other's methods. Let us now briefly look into what a
class, object, methods, and instant variables mean.

 Object − Objects have states and behaviors. Example: A dog has states - color,

name, breed as well as behaviors - wagging, barking, eating. An object is an
instance of a class.

 Class − A class can be defined as a template/blueprint that describes the
behaviors/states that object of its type support.

 Methods − A method is basically a behavior. A class can contain many methods.
It is in methods where the logics are written, data is manipulated and all the
actions are executed.

 Instance Variables − Each object has its unique set of instance variables. An

object's state is created by the values assigned to these instance variables.

 C++ Program Structure

#include <iostream>

using namespace std;

https://www.w3schools.com/cs/default.asp
https://www.w3schools.com/java/default.asp

// main() is where program execution begins.

int main() {

 cout << "Hello World"; // prints Hello World

 return 0;

}

C++ Variables

Variables are containers for storing data values.

In C++, there are different types of variables (defined with different
keywords), for example:

 int - stores integers (whole numbers), without decimals, such as 123 or -

123
 double - stores floating point numbers, with decimals, such as 19.99 or -

19.99
 char - stores single characters, such as 'a' or 'B'. Char values are

surrounded by single quotes
 string - stores text, such as "Hello World". String values are surrounded

by double quotes
 bool - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, specify the type and assign it a value:

Syntax

type variableName = value;

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

cout << myNum;

Example

int myNum = 5; // Integer (whole number without decimals)

double myFloatNum = 5.99; // Floating point number (with decimals)

char myLetter = 'D'; // Character

string myText = "Hello"; // String (text)

bool myBoolean = true; // Boolean (true or false)

C++ User Input

cin is a predefined variable that reads data from the keyboard with the

extraction operator (>>).

int x;
cout << "Type a number: "; // Type a number and press enter

cin >> x; // Get user input from the keyboard

cout << "Your number is: " << x; // Display the input value

C++ is a general purpose, case-sensitive, free-form programming language that supports

object-oriented, procedural and generic programming.

Object-Oriented Programming (OOPs)

C++ supports the object-oriented programming, the four major pillar of object-oriented

programming (OOPs) used in C++ are:

1. Inheritance

2. Polymorphism

3. Encapsulation

4. Abstraction

C++ Standard Libraries

Standard C++ programming is divided into three important parts:

o The core library includes the data types, variables and literals, etc.

o The standard library includes the set of functions manipulating strings, files, etc.

o The Standard Template Library (STL) includes the set of methods manipulating a

data structure.

C++ Functions

A function is a block of code that performs a specific task.To perform any task, we

can create function. A function can be called many times. It provides modularity and code

reusability.

Advantage of functions in C

There are many advantages of functions.

1) Code Reusability

https://www.javatpoint.com/cpp-oops-concepts

By creating functions in C++, you can call it many times. So we don't need to write the

same code again and again.

2) Code optimization

It makes the code optimized, we don't need to write much code.

Suppose, you have to check 3 numbers (531, 883 and 781) whether it is prime number or

not. Without using function, you need to write the prime number logic 3 times. So, there

is repetition of code.

But if you use functions, you need to write the logic only once and you can reuse it several

times.

Types of Functions

There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C++ header files such

as ceil(x), cos(x), exp(x), etc.

2. User-defined functions: are the functions which are created by the C++ programmer,

so that he/she can use it many times. It reduces complexity of a big program and

optimizes the code.

C++ Function Declaration

The syntax to declare a function is:

returnType functionName (parameter1, parameter2,...) {

 // function body

}

Here's an example of a function declaration.

// function declaration

void greet() {

 cout << "Hello World";

}

Calling a Function

In the above program, we have declared a function named greet(). To use

the greet() function, we need to call it.

Here's how we can call the above greet() function.

int main() {

 // calling a function

 greet();

}

#include <iostream>

using namespace std;

// declaring a function

void greet() {

 cout << "Hello there!";

}

int main() {

 // calling the function

 greet();

 return 0;

}

Call by value and call by reference in C++

There are two ways to pass value or data to function in C language: call by value and call

by reference. Original value is not modified in call by value but it is modified in call by

reference.

Call by value in C++

In call by value, original value is not modified.

In call by value, value being passed to the function is locally stored by the function

parameter in stack memory location. If you change the value of function parameter, it is

changed for the current function only. It will not change the value of variable inside the

caller method such as main().

1. #include <iostream>

2. using namespace std;

3. void change(int data);

4. void main()

5. {

6. int data = 3;

7. change(data);

8. cout << "Value of the data is: " << data<< endl;

9. getch();

10. }

11. void change(int data)

12. {

13. data = 5;

14. }

Call by reference in C++

In call by reference, original value is modified because we pass reference (address).

Here, address of the value is passed in the function, so actual and formal arguments share

the same address space. Hence, value changed inside the function, is reflected inside as

well as outside the function.

Note: To understand the call by reference, you must have the basic knowledge of

pointers.

1. #include<iostream>

2. using namespace std;

3. void swap(int *x, int *y)

4. {

5. int swap;

6. swap=*x;

7. *x=*y;

8. *y=swap;

9. }

10. int main()

11. {

12. int x=500, y=100;

13. swap(&x, &y); // passing value to function

14. cout<<"Value of x is: "<<x<<endl;

15. cout<<"Value of y is: "<<y<<endl;

16. return 0;

17. }

N

o.

Call by value Call by reference

1 A copy of value is passed to the

function

An address of value is passed to the function

2 Changes made inside the function

is not reflected on other functions

Changes made inside the function is reflected outside the function also

3 Actual and formal arguments will

be created in different memory

location

Actual and formal arguments will be created in same memory location

Inline vs Macro

C++ Function Overloading

In C++, two functions can have the same name if the number and/or type of arguments passed is

different.

These functions having the same name but different arguments are known as overloaded

functions. For example:

// same name different arguments

int test() { }

int test(int a) { }

float test(double a) { }

int test(int a, double b) { }

Here, all 4 functions are overloaded functions.

Notice that the return types of all these 4 functions are not the same. Overloaded functions may

or may not have different return types but they must have different arguments. For example,

// Error code

int test(int a) { }

double test(int b){ }

Here, both functions have the same name, the same type, and the same number of arguments.

Hence, the compiler will throw an error.

#include <iostream>

 void print(int i) {

 cout << " Here is int " << i << endl;

}

void print(double f) {

 cout << " Here is float " << f << endl;

}

void main() {

 print(10);

 print(10.8);

 getch();

}

Output:

Here is int 10

Here is float 10.8

	What is C++?
	Why Use C++
	 C++ Program Structure
	C++ Variables
	Declaring (Creating) Variables
	Syntax
	Example
	Example (1)

	C++ User Input
	Object-Oriented Programming (OOPs)
	C++ Standard Libraries
	C++ Functions
	Advantage of functions in C
	Types of Functions
	C++ Function Declaration
	Calling a Function

	Call by value and call by reference in C++
	Call by value in C++
	Call by reference in C++

	C++ Function Overloading

